12+  Свидетельство СМИ ЭЛ № ФС 77 - 70917
Лицензия на образовательную деятельность №0001058
Пользовательское соглашение     Контактная и правовая информация
 
Педагогическое сообщество
УРОК.РФУРОК
 
Материал опубликовала
Кузнецова Алина Валентиновна7345
Россия, Свердловская обл., Первоуральск
Материал размещён в группе «Проф.тех.образование»

ПЕРЕДАЧА СИГНАЛОВ ПО ЛИНИЯМ ЭЛЕКТРОПЕРЕДАЧИ

Принцип передачи сигналов по линиям высокого напряжения.

Линии электропередачи можно рассматривать как своеобразный тракт для передачи сигналов связи, поскольку конструкция линии электропередачи, всецело определяемая ее главным назначением – передачей электрической энергии, одновременно оказывается обладающей достаточно удовлетворительными «связными» характеристиками.

В самом деле, для линий электропередачи применяются провода из цветных металлов, имеющие большое сечение и очень хорошую изоляцию. Эти особенности определяют потенциальную возможность передачи информации на значительные расстояния. При этом высокий уровень эксплуатации и значительная механическая прочность линий высокого напряжения обеспечивают надежность каналов связи, недостижимую не только для обычных воздушных, но и для кабельных линий связи.

Особенно благоприятным условием для организации такой связи в энергосистемах является совпадение направлений передачи информации (то есть возможность передачи информации по кратчайшему направлению) и заход линий именно в те пункты, с которыми необходимо организовать связь. 

   При всех этих достоинствах линии электропередачи обладают рядом свойств, затрудняющих их использование для передачи информации. К их числу относятся сложность присоединения аппаратуры связи к проводам, необходимость защиты обслуживающего персонала от высокого напряжения, наличие на энергообъектах коммутационного и распределительного оборудования, высокий уровень линейных помех, многопроводность тракта передачи и т.д.

При проектировании каналов связи по проводам линий высокого напряжения необходимо поэтому умело использовать их возможности и находить приемлемые технические решения, обеспечивающие достаточно высокое качество каналов связи при сохранении надёжности и конструкции самой линии электропередачи или её отдельных элементов.

Так как передачу информации по проводам, находящимся под напряжением в несколько десятков или даже сотен тысяч вольт, нельзя выполнить непосредственным подключением соответствующей аппаратуры связи, то такое присоединение осуществляется с помощью специальных устройств – так называемой аппаратуры обработки линии, состоящей из конденсатора связи, заградителя и элементов защиты. Следовательно в линии электропередачи неизбежно появляются дополнительные элементы, не имеющие отношения к передаче электроэнергии и могущие ослабить в какой-то степени электрическую прочность линии. Это ослабление можно сделать пренебрежимо малым, применив аппаратуру обработки, электрически равнопрочную с остальными элементами линии, тщательно выполнив её монтаж и расположив эту аппаратуру в местах, где за ней легко наблюдать. Как показывает опыт, соблюдение этих условий практически не снижает надёжности работы линии электропередачи. 

   Токи высокой частоты, несущие информацию, должны распространяться между передатчиком и приемником по кратчайшему пути, не ответвляясь в нежелательных для связи направлениях. Отсюда следует, что принцип передачи сигналов по линии электропередачи заключается в создании между нужными пунктами такого тракта распространения сигналов по высоковольтным проводам, в котором при сохранении надёжности линии были бы полностью использованы её полезные для связи свойства, а влияние элементов и параметров линии, ухудшающих характеристики тракта связи, сведено к минимуму.

Тракт распространения сигналов состоит из проводов линий электропередачи, аппаратуры обработки, высокочастотных кабелей, разделительных фильтров и других элементов, необходимых для устройства канала связи. Совокупность всех элементов, включенных между выходом передатчика и входом приемника для образования непрерывного пути токам высокой частоты между двумя или несколькими пунктами, в дальнейшем будем называть высокочастотным трактом.

Волоконно-оптическая линия передачи

Волоко́нно-опти́ческая ли́ния переда́чи (ВОЛП), Волоко́нно-опти́ческая ли́ния свя́зи (ВОЛС) — волоконно-оптическая система, состоящая из пассивных и активных элементов, предназначенная для передачи информации в оптическом (как правило — ближнем инфракрасном) диапазоне.

Элементы ВОЛП Активные компоненты

Мультиплексор/Демультиплексор — широкий класс устройств, предназначенных для объединения и разделения информационных каналов. Мультиплексоры и демультиплексоры могут работать как во временно́й, так и в частотной областях, могут быть электрическими и оптическими (для систем со спектральным уплотнением).

Регенератор — устройство, осуществляющее восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения. Регенераторы могут быть как чисто оптическими, так и электрическими, которые преобразуют оптический сигнал в электрический, восстанавливают его, а затем снова преобразуют в оптический.

Усилитель — устройство, усиливающее мощность сигнала. Усилители также могут быть оптическими и электрическими, осуществляющими оптико-электронное и электронно-оптическое преобразование сигнала.

Лазер — источник монохромного когерентного оптического излучения. В системах с прямой модуляцией, которые являются наиболее распространёнными, лазер одновременно является и модулятором, непосредственно преобразующим электрический сигнал в оптический.

Модулятор — устройство, модулирующее оптическую несущую по закону информационного электрического сигнала. В большинстве систем эту функцию выполняет лазер, однако в системах с непрямой модуляцией для этого используются отдельные устройства.

Фотоприёмник (фотодиод) — устройство, осуществляющее опто-электронное преобразование сигнала.

Пассивные компоненты

Оптический кабель, светонесущими элементами которого являются оптические волокна. Наружная оболочка кабеля может быть изготовлена из различных материалов: поливинилхлорида, полиэтилена, полипропилена, тефлона и других материалов. Оптический кабель может иметь бронирование различного типа и специфические защитные слои (например, мелкие стеклянные иглы для защиты от грызунов).

Оптическая муфта — устройство, используемое для соединения двух и более оптических кабелей.

Оптический кросс — устройство, предназначенное для оконечивания оптического кабеля и подключения к нему активного оборудования.

Преимущества ВОЛП

Волоконно-оптические линии обладают рядом преимуществ перед проводными (медными) и радиорелейными системами связи:

Малое затухание сигнала (0,15 дБ/км в третьем окне прозрачности) позволяет передавать информацию на значительно большее расстояние без использования усилителей. Усилители в ВОЛП могут ставиться через 40, 80 и 120 километров, в зависимости от класса оконечного оборудования.

Высокая пропускная способность оптического волокна позволяет передавать информацию на высокой скорости, недостижимой для других систем связи.

Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены слабому электромагнитному воздействию.

Информационная безопасность — информация по оптическому волокну передаётся «из точки в точку».

Высокая защищённость от межволоконных влияний — уровень экранирования излучения более 100 дБ. Излучение в одном волокне совершенно не влияет на сигнал в соседнем волокне.

Пожаро- и взрывобезопасность при изменении физических и химических параметров

Малые габариты и масса

Недостатки ВОЛП

Относительная хрупкость оптического волокна. При сильном изгибании кабеля (особенно, если в качестве силового элемента используется стеклопластиковый пруток) возможна поломка волокон или их замутнение из-за возникновения микротрещин.

Сложность соединения в случае разрыва.

Сложная технология изготовления как самого волокна, так и компонентов ВОЛП.

Сложность преобразования сигнала (в интерфейсном оборудовании).

Относительная дороговизна оптического оконечного оборудования. Однако, оборудование является дорогим в абсолютных цифрах. Соотношение цены и пропускной способности для ВОЛП лучше, чем для других систем.

Замутнение волокна с течением времени вследствие старения.

Применение ВОЛП

Достоинства волоконно-оптических линий обусловило их широкое применение в телекоммуникационных сетях самых разных уровней — от межконтинентальных магистралей до корпоративных и домашних компьютерных сетей.

Монтаж ВОЛП Укладка кабеля

Оптический кабель для линий связи может быть уложен следующим образом:

В кабельную канализацию или кабельный коллектор;

Непосредственно в грунт — в предварительно подготовленную траншею или с использованием кабелеукладчика;

Подвес кабеля — воздушная линия связи.

Для каждого случая изготавливаются специальные кабели, отличающиеся типом оболочки, брони, допустимым растягивающим усилием и другими параметрами.

Монтаж муфт и кроссов

Сварка оптического волокна

Для сращивания оптических кабелей применяются оптические муфты, представляющие собой пластиковые контейнеры, внутри которых расположена сплайс-пластина, удерживающая оптические волокна.

Оптический кросс представляет собой устройство, посредством которого осуществляется соединение оптических волокон кабеля со стандартными разъёмами. Кросс выполняется в виде металлической (как правило) коробки, на внешней панели которой находятся оптические разъёмы, а внутри — сплайс-пластина. Соединение разъёмов кросса с волокнами кабеля осуществляется с помощью пигтейлов — коротких кусков оптического волокна с разъёмами. Разъём пигтейла с внутренней стороны кросса соединяется с внешним разъёмом кросса, а другой конец приваривается к волокну оптического кабеля.

Оптические кроссы могут изготавливаться для монтажа в стандартную 19-дюймовую стойку, монтажа на стену и в других исполнениях. Кроссы могут иметь возможность открываться без демонтажа или не иметь таковой.

Сварка оптических волокон осуществляется в полуавтоматическом режиме специальными сварочными аппаратами.

Передача данных

Передача данных (обмен данными, цифровая передача, цифровая связь) — физический перенос данных (цифрового битового потока) в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу связи, как правило, для последующей обработки средствами вычислительной техники.

Примерами подобных каналов могут служить медные провода, оптическое волокно, беспроводные каналы связи или запоминающее устройство.

Передача данных может быть аналоговой или цифровой (то есть поток двоичных сигналов), а также модулирован посредством аналоговой модуляции, либо посредством цифрового кодирования.

Хотя аналоговая связь является передачей постоянно меняющегося цифрового сигнала, цифровая связь является непрерывной передачей сообщений. Сообщения представляют собой либо последовательность импульсов, означающую линейный код (в полосе пропускания), либо ограничивается набором непрерывно меняющейся формы волны, используя метод цифровой модуляции. Такой способ модуляции и соответствующая ему демодуляция осуществляются модемным оборудованием.

Передаваемые данные могут быть цифровыми сообщениями, идущими из источника данных, например, из компьютера или от клавиатуры. Это может быть и аналоговый сигнал — телефонный звонок или видеосигнал, оцифрованный в битовый поток, используя импульсно-кодирующую модуляцию (PCM) или более расширенные схемы кодирования источника (аналого-цифровое преобразование и сжатие данных). Кодирование источника и декодирование осуществляется кодеком или кодирующим оборудованием.

Последовательная и параллельная передача

В телекоммуникации, последовательная передача — это последовательность передачи элементов сигнала, представляющих символ или другой объект данных. Цифровая последовательная передача — это последовательная отправка битов по одному проводу, частоте или оптическому пути. Так как это требует меньшей обработки сигнала и меньше вероятность ошибки, чем при параллельной передаче, то скорость передачи данных по каждому отдельному пути может быть быстрее. Этот механизм может использоваться на более дальних расстояниях, потому что легко может быть передана контрольная цифра или бит чётности.

Параллельной передачей в телекоммуникациях называется одновременная передача элементов сигнала одного символа или другого объекта данных. В цифровой связи параллельной передачей называется одновременная передача соответствующих элементов сигнала по двум или большему числу путей. Используя множество электрических проводов можно передавать несколько бит одновременно, что позволяет достичь более высоких скоростей передачи, чем при последовательной передаче. Этот метод применяется внутри компьютера, например, во внутренних шинах данных, а иногда и во внешних устройствах, таких, как принтеры. Основной проблемой при этом является «перекос», потому что провода при параллельной передаче имеют немного разные свойства (не специально), поэтому некоторые биты могут прибыть раньше других, что может повредить сообщение. Бит чётности может способствовать сокращению ошибок. Тем не менее электрический провод при параллельной передаче данных менее надёжен на больших расстояниях, поскольку передача нарушается с гораздо более высокой вероятностью.

Опубликовано в группе «Проф.тех.образование»


Комментарии (0)

Чтобы написать комментарий необходимо авторизоваться.